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Abstract Polyploidization is a key component of plant
evolution. The number of independent origins of poly-
ploid species traditionally has been underestimated. The
objective of this study was to ascertain the number of or-
igins of a tetraploid Aegilops species. We screened 84
primer sets to identify genome-specific primer sets for
the tetraploid wheat relative [Aegilops triuncialis
(UUCC genome)] and its diploid progenitors [Ae. umbel-
lulata (UU genome) and Ae. caudata (CC genome)].
Primer sets G12 and G43 were U genome-specific and
D21 was a C genome-specific primer. DNA sequence
comparison of the G43 locus was used to estimate the
number of polyploidization events in the formation of
Ae. triuncialis. Parsimony analysis of G43 data revealed
at least two independent formations of Ae. triuncialis. In
the chloroplast hotspot region, located between genes
rbcL and petA, sequence analysis suggested that at least
three polyploidization origins might have occurred inde-
pendently. Ae. triuncialis appears to be a tetraploid de-
rived from multiple origins with minimal genome
change after its formation.

Keywords Aegilops · Polyploidization · Wheat relatives ·
Allopolyploid

Introduction

Within the plant kingdom, polyploidization is a powerful
process leading to speciation as well as providing genet-
ic variation. In general, 70% of angiosperms have under-
gone polyploidization at least once (Masterson 1994).
Polyploid species tend to be more widely distributed and

found in more extreme habitats than their diploid ances-
tors (Soltis and Soltis 2000). Understanding the number
of polyploidization events that have occurred in the for-
mation of a given species, and the consequences of such
events, has been a major challenge. The traditional point
of view was that polyploidization events were rare be-
cause less variability within polyploid species was ob-
served than within the diploid relatives (Stebbins 1971).
However, more recently, recurrent formation of polyplo-
ids has been demonstrated. Over 30 examples of allotet-
raploid species have been shown to have multiple origins
to date (Soltis and Soltis 1999). Hexaploid wheat formed
at least twice from its diploid progenitor, Aegilops taus-
chii (DD genome) (Dvorak et al. 1998; Talbert et al.
1998).

Allopolyploids receive their chromosome sets from
different species, unlike autopolyploids that receive mul-
tiple sets of chromosomes from one species. The preva-
lence of allopolyploid formation and the degree of genet-
ic separation between allopolyploids and their progeni-
tors have important consequences for the accumulation
of genetic variability within an allopolyploid. Aegilops
triuncialis (UUCC genome) is an allotetraploid that re-
sulted from reciprocal crosses of the diploids Ae. umbel-
lulata (UU genome) and Ae. caudata (CC genome)
(Wang et al. 1997). Aegilops triuncialis is the most wide-
spread Aegilops species in the world. This grass is dis-
tributed between altitudes of 300 m and 1000 m and has
become a troublesome weed on U.S. rangelands 
(Watanabe and Kawahara 1999). Its successful adapta-
tion may result from the genetic attributes of polyploids,
such as high genetic variability and the evolution of new
gene functions (Soltis and Soltis 2000).

Molecular approaches including restriction fragment
analysis, comparative sequencing and various polymer-
ase chain reaction (PCR)-based techniques are now
available to uncover recurrent origins of allopolyploids.
Within a plant cell, three different types of DNA are
found: nuclear, chloroplast (cp) and mitochondria (mt)
DNA. Most current molecular data have come from the
chloroplast, the highly repetitive sequences of ribosomal
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RNA (rRNA) and low-copy genes (Soltis et al. 1998).
Genome-specific primers may be used to analyze the bi-
parentally inherited nuclear genome of an allopolyploid.
The aim is to lessen ambiguous results by demonstrating
direct inheritance of an allele from a specific ancestral
genome. Small et al. (1999) derived genome specific
primers for the AdhA locus in tetraploid cotton by clon-
ing and sequencing homoeologous products from each
subgenome. These primers were used to assess nucleo-
tide diversity within tetraploid cotton. Talbert et al.
(1998) used nullitetrasomic wheat stocks to identify a D
genome-specific primer, A1, in wheat. Sequence com-
parison of A1 amplicons in wheat and the D genome dip-
loid progenitor, Ae. tauschii, indicated that hexaploid
wheat was formed at least twice. Chee et al. (1995) used
primer sets specific for the U and M genomes of
Aegilops to show that tetraploid UUMM accessions
shared restriction site polymorphisms with both diploid
progenitors, indicating multiple origins of the polyploid.

Because of the size and slow mutation rate of the chlo-
roplast genome, it has several advantages for taxonomic
and evolutionary studies. The genome is quite small, ap-
proximately 120–200 kb. In Chinese Spring wheat, the
chloroplast genome is 134,540 bp long (Ogihara and
Tsunewaki 2000). CpDNA is usually maternally inherited
in plants. The genome is relatively conserved during its
evolution throughout plant species. The chloroplast ge-
nome evolves four to five times slower than the nuclear ge-
nome and three times faster than that of mitochondria
(Page and Holmes 1998). Because different regions of
DNA evolved at different rates, some parts of the cpDNA
might be appropriate to resolve relationships at different
taxonomic levels (Soltis et al. 1998). Provan et al. (2001)
reviewed the use of noncoding regions and chloroplast mi-
crosatellites for intraspecific and interspecific studies in
Glycine, rice, and wheat (Powell et al. 1996; Ishi and
McCouch 2000; Ishi et al. 2001). The chloroplast gene en-
coding the large subunit of ribulose-1, 5-bisphosphatecar-
boxylase/oxygenase (rbcL) was used extensively in molec-
ular systematic studies among angiosperms (Chase et al.
1993). Other chloroplast genes such as atpB, ndhF and
matK, were also utilized (Judd et al. 1999).

All previous studies have confirmed a maternal lin-
eage of chloroplast inheritance among Triticum and
Aegilops species (Ogihara and Tsunewaki 1982; Murai
and Tsunewaki 1986; Tsunewaki 1993; Wang et al.
1997). Ogihara and Tsunewaki (1988) defined 16 chloro-
plast types in Triticum and Aegilops species based on re-
striction fragment length polymorphism (RFLP). Their
results showed that six of fourteen insertion/deletion mu-
tations (indels) were located between the genes rbcL and
petA. The region was designated as a hotspot and not on-
ly contained many direct and inverted repeats near the
indel region but also was AT-rich (Ogihara et al. 1992).
They suggested that these two characteristics might be
responsible for the high mutation rate. Previous studies
of alloplasmic wheat lines containing Ae. caudata, Ae.
triuncialis and synthetic Ae. triuncialis cytoplasm had
type-2 chloroplast, which included a 300-bp deletion

within the hotspot region. Unlike Ae. caudata, Ae. um-
bellulata cytoplasm in an alloplasmic line had type-3
chloroplast lacking this deletion (Ogihara and Tsunewaki
1988). The deletion was one of many structural changes
distinguishing Ae. caudata and Ae. umbellulata. This re-
gion seemed promising for differentiating these geno-
mes, although only one alloplasmic line per species was
analyzed. Further study using nucleotide sequence com-
parison revealed that nucleotides at the intergenic re-
gions diverged ten times faster than those of coding re-
gions (Ogihara et al. 1991).

Evidence from chloroplast studies of Murai and
Tsunewaki (1986) and Wang et al. (1997) demonstrated
that Ae. triuncialis derived from reciprocal crosses of Ae.
caudata and Ae. umbellulata. Murai and Tsunewaki
(1986) revealed that 13 accessions of Ae. triuncialis had
type-2 chloroplast as did an alloplasmic line with Ae.
caudata cytoplasm. Eight accessions of Ae. triuncialis
contained type-3 chloroplast as did an alloplasmic line
with Ae. umbellulata cytoplasm. The 300-bp deletion
within the hotspot region was presumed to be specific to
the C genome. Wang et al. (1997) confirmed these re-
sults, as well as determining that the two types of Ae. tri-
uncialis were formed recently and concurrently.

For this report, we identified genome-specific primers
for the U, C and chloroplast genomes, to allow unambig-
uous genome assessment of products amplified from Ae.
triuncialis. Since DNA sequence comparison provides
the greatest discrimination of evolutionary relationships,
sequence data were obtained from DNA segments ampli-
fied using these genome-specific primers. Phylogenetic
analysis based on DNA sequence data was performed to
determine the relationships of the diploid ancestors, Ae.
caudata and Ae. umbellulata and the allotetraploid, Ae.
triuncialis. Data was evaluated to assess the number of
origins of Ae. triuncialis.

Materials and methods

Plant materials

Thirty-one accessions of Aegilops caudata, 33 accessions of Ae.
umbellulata and 212 accessions of Ae. triuncialis were obtained
from USDA National Small Grain Collection, Aberdeen, Idaho,
USA. Three accessions of Ae. caudata, two accessions of Ae. um-
bellulata and six accessions of Ae. triuncialis were requested from
the Wheat Genetics Resource, Kansas State University. Four acces-
sions of Ae. triuncialis were obtained from the Plant Germplasm
Institute, Kyoto University Japan (http://www.shigen.nig.ac.jp/
wheat/chloroplast/) (Murai and Tsunewaki 1986). Aegilops tauschii
accession KU2050 was used as an outgroup species. All plants
were grown in the Plant Growth Center at Montana State Universi-
ty, and young leaves were collected for total genomic DNA extrac-
tion (Riede and Anderson 1996). A single plant was used from
each accession. Genomic DNA was adjusted to approximately
100 ng/µl for use as template DNA in PCR reactions.

PCR primers

A total of 84 primer sets designed from wheat, Ae. tauschii, barley
and oat (Tragoonrung et al. 1992; Talbert et al. 1994; Erpelding et



al. 1996) were used to screen accessions of Ae. caudata, Ae. um-
bellulata and Ae. triuncialis. Primers were synthesized by Sigma
Genosys, USA. Six primers were designed for each side of the
chloroplast hotspot region and tested in all combinations to identi-
fy the most robust pair. The Cp6 (U6/R6) primer set was selected
to amplify the noncoding region between the ycf4 and cemA genes
within the chloroplast genome of Triticum and Aegilops species.
PCR amplification, digestion and analysis were performed using
the protocol of Talbert et al. (1994).

Statistical analysis

A χ2 goodness-of-fit test was performed to test the nuclear and
chloroplast correspondence for G43 and U6/R6 loci within Ae. tri-
uncialis. A 2×2 two-way table was used for the χ2 goodness-of-fit
test.

Cloning and DNA sequencing

PCR products were cloned prior to DNA sequencing using the
pCR2.1-TOPO vector (Invitrogen, Carlsbad, Calif.) or pGEM-T
vector (Promega, Madison, Wis.). Sequencing was done on an
ABI377 automated DNA sequencer with the Perkin Elmer BigDye
sequencing reaction kit (PE Biosystems, Foster City, Calif.). Se-
quences were read in both the forward and reverse directions us-
ing either the original primer sets or cloning vector primers.

Phylogenetic analysis

Sequences were initially aligned by ALIGN program (Scientific and
Educational Software 1989) followed by manual alignment to mini-
mize gaps. The data were analyzed with maximum parsimony as
implemented in the computer program PAUP* version 4.0 beta8
(Swofford 1998). Parsimony analysis counteracts sequence errors
due to PCR of cloned amplicons since it is necessary that at least
two taxa share a nucleotide change for it to be used to construct
phylogenetic relationships. The stepwise addition option was used
to find the most parsimonious bootstrap trees. Bootstrapping was
performed using the full heuristic search option of PAUP* to calcu-
late the robustness of each branch. The analysis was set with the fol-
lowing parameters: 100 bootstrap replicates (Felsenstein 1985) with
gaps treated as missing data, tree bisection-reconstruction branch
swapping and random sequence addition. All characters were
weighted equally. Bootstrap values indicated the percentage of time
that resampling yielded the same clade. The goodness-of-fit statistic
estimated the reliability of each phylogenetic tree. Consistency in-
dex (CI), retention index (RI), and rescaled consistency index (RC)
were calculated (Kluge and Farris 1969; Farris 1989). Aegilops
tauschii accession KU2050 was used as an outgroup taxon.

Results and discussion

A total of 84 primer sets were screened on at least two
accessions each of Ae. umbellulata, Ae. caudata and Ae.
triuncialis in order to identify genome-specific primers.
PCR products were amplified at annealing temperatures
of either 45 °C (71.43%) or 50 °C (68.65%). All of the
primers tested were derived from related species (Ae.
tauschii, wheat, barley and oat) and may not have ampli-
fied or given less repeatable results than primers devel-
oped from the target species (Erpelding et al. 1996; Van-
ichanon et al. 2000). In our results, 46 primer sets ampli-
fied all three genomes, and only three primer sets were
genome-specific. U genome-specific primers were G12
and G43 and primer set D21 was C genome-specific.
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Only locus G43 showed sufficient sequence polymor-
phism among accessions for phylogenetic analysis.

Multiple origins of Ae. triuncialis inferred using nuclear
DNA sequence analysis

Nuclear DNA analysis was chosen to assess multiple ori-
gins of tetraploid Ae. triuncialis. Genome-specific prim-
ers were preferred because they provided unambiguous
evidence that a specific Ae. triuncialis pattern came from
either Ae. umbellulata or Ae. caudata. Therefore, G43, a
U genome-specific primer, was selected for further eval-
uation (Chee et al. 1995). DdeI restriction digestion of
the G43 amplicon yielded two banding patterns: allele A
(Fig. 1, lanes 1, 2; fragment sizes: 300, 240, 220 bp) and
allele B (Fig. 1, lanes 3, 4; fragment sizes: 240, 220, 200,
100 bp). Both alleles were observed in Ae. umbellulata
and Ae. triuncialis. This is evidence that Ae. triuncialis
inherited two distinct alleles from Ae. umbellulata, indi-
cating that at least two distinct polyploidization events
occurred. 

A single nucleotide change detected by restriction
fragment analysis may not be sufficient to determine
evolutionary relationships since independent mutations
may give rise to the same polymorphism. Because of
limited data from the restriction fragment studies, the
G43 locus was selected for comparative DNA sequence
analysis to determine whether the RFLP was indicative
of distinct alleles. We sequenced G43 alleles from ten
accessions of Ae. umbellulata and eight accessions of Ae.

Fig. 1 DdeI-digested DNA amplified from Aegilops umbellulata
and Ae. triuncialis using primer G43. Lanes 1, 2 allele A, 
lanes 3, 4 allele B. Lanes: 1 Ae. umbellulata (U05) 2 Ae. triunci-
alis (UC10) 3 Ae. umbellulata (U08) 4 Ae. triuncialis (UC04)
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triuncialis (Table 1). A total of 802 bases of DNA se-
quence were obtained for all alleles. Sequence data con-
firmed the assumption from restriction analysis that both
Ae. umbellulata and Ae. triuncialis bear the same two
distinct alleles. Table 2 tabulates nucleotide differences
that distinguish the two alleles. A total of 17 nucleotide
changes differentiated allele A from allele B in Ae. um-
bellulata and Ae. triuncialis. We assumed that allele A in
the Ae. triuncialis accessions was inherited from allele A
in the Ae. umbellulata accessions, either paternally or
maternally, and similarly for allele B. 

Multiple alignment of G43 sequences revealed 36
parsimony sites and 97 variable sites within ten acces-
sions of Ae. umbellulata. There were 28 parsimony sites
and 35 variable sites within eight accessions of Ae. triun-
cialis. All 28 parsimony sites and 35 variable sites in Ae.
triuncialis were also found in Ae. umbellulata. Hence, all
polymorphisms in the polyploid appear to have been in-
herited from the diploid progenitor.

The low levels of polymorphism observed and the
fact that all the polymorphisms in Ae. triuncialis oc-
curred in Ae. umbellulata agrees with Liu et al. (2001)
who observed that a slow rate of genomic change oc-
curred in synthetic allopolyploid cotton (Gossypium)
species. They concluded that a rapid rate of genome
changes after polyploidization was not the rule. A signif-
icant difference between our study and the cotton study
was that Ae. triuncialis is a natural allopolyploid not a
synthetic one. This is evidence that synthetic and natu-
rally occurring allopolyploids can undergo similar levels
of genome change after polyploidization. However, syn-
thetic allopolyploid Brassica, Triticum and Aegilops spe-
cies showed a rapid rate of genomic changes (Song et al.
1995; Liu et al. 1998a, b). From synthetic allopolyploid
Brassica, Song et al. (1995) concluded that the more
closely related the parents, the fewer genomic changes
that occurred. Therefore, one possible reason for the ap-
parent slow rate of genomic change in Ae. triuncialis
may be due to closely related diploid parents (Badaeva et
al. 1996).

A PAUP-generated phylogenetic tree (Fig. 2) was de-
veloped with a minimal tree length of 86. Goodness-
of-fit statistics were calculated. Consistency, retention
and rescaled consistency indices were 0.9186, 0.9517

Table 1 List of Aegilops umbellulata and Aegilops triuncialis ac-
cessions used in DNA sequence comparisons of locus G43

Species Accession Lab designation

Ae. umbellulata CIae 66 U01
PI204546 U02
PI222762 U03
PI227339 U04
PI227436 U05
PI298907 U07
PI428569 U08
PI486256 U09
PI487247 U10
PI573515 U14

Ae. triuncialis PI542322 UC01
PI542279 UC02
PI374344 UC04
PI226501 UC05
PI219864 UC06
PI542325 UC07
PI551178 UC11
PI574471 UC15

Table 2 Polymorphic nucleotide positions in locus G43. Polymor-
phic nucleotide position site numbers given above sequences. Ae.
umbellulata accession U01 is reference sequence for all other ac-

cessions. A period denotes nucleotide identity to the reference se-
quence; gaps are indicated by dashes. Allelic designations are giv-
en in the final column. Accession identification is given in Table 1

Accession Site number Allele

1 3 3 3 3 3 3 3 3 3 3 4 4 4 4
1 0 0 0 0 0 2 5 6 6 8 8 1 1 1 1

7 7 7 5 6 7 9 0 8 1 5 6 9 0 1 2 3

U01 T G A T C G C T C C C A A G – – – A
U02 . . . . . . . . . . . . . . . . . A
U03 A T G – – – T C T T A G G C T A A B
U04 A T G – – – T C T T A G G C T A A B
U05 . . . . . . . . . . . . . . . . . A
U07 A T G – – – T C T T A G G C T A A B
U08 A T G – – – T C T T A G G C T A A B
U09 A T G – – – T C T T A G G C T A A B
U10 . . . . . . . . . . . . . . . . . A
U14 A T G – – – T C T T A G G C T A A B
UC01 A T G – – – T C T T A G G C T A A B
UC02 . . . . . . . . . . . . . . . . . A
UC04 A T G – – – T C T T A G G C T A A B
UC05 A T G – – – T C T T A G G C T A A B
UC06 A T G – – – T C T T A G G C T A A B
UC07 A T G – – – T C T T A G G C T A A B
UC11 . . . . . . . . . . . . . . . . . A
UC15 A T G – – – T C T T A G G C T A A B
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and 0.8743, respectively. At node 26, the split into A-
and B-allele clades gave a bootstrap value of 100% of re-
sampling (Fig. 2). The A-allele clade contained both Ae.
umbellulata and Ae. triuncialis accessions, as did the B-
allele clade. Thus, all G43 outcomes indicated that poly-
ploidization occurred at least twice. 

Multiple origins of Ae. triuncialis inferred using cpDNA
sequence analysis

We designed six primers on each side of the chloroplast
hot spot region between rbcL and petA and tested them
in all combinations to identify the most reliable pair.
Primer set U6/R6 amplified a 600-base intergenic region
between ycf4 and cemA that included the area involved
in the 300-bp deletion (Ogihara and Tsunewaki 1988).
PCR analysis results showed that 23 Ae. caudata acces-
sions had the deletion (nucleotides inside the box in
Fig. 3) and four accessions lacked the deletion. Thirty
accessions of Ae. umbellulata had no deletion, while
three had the deletion. This showed that the deletion can-
not distinguish the Ae. caudata chloroplast from the Ae.
umbellulata chloroplast. 

PCR data showed that some U chloroplast genomes
shared the deletion with the majority of C chloroplast
genomes. To determine additional polymorphisms be-
tween Ae. caudata and Ae. umbellulata chloroplast geno-
mes, we sequenced U6/R6 alleles from ten accessions of
Ae. umbellulata and four accessions of Ae. caudata lack-
ing the deletion. All ten accessions of Ae. umbellulata
had nucleotide T at position 58,329 (bold double-under-
lined nucleotide in Fig. 3) based on the complete se-
quence of wheat cpDNA (Ogihara and Tsunewaki 2000).
All four accessions of Ae. caudata had nucleotide G at
the same position. This nucleotide position was presum-
ably genome-specific with T being specific for Ae. um-
bellulata and G specific for Ae. caudata.

The observation that Ae. triuncialis had two chloro-
plast types, i.e. with and without the deletion, indicates
two origins (Murai and Tsunewaki 1986). Of 14 acces-

sions of Ae. triuncialis lacking the deletion, seven of
them had nucleotide G, indicating that they had the dip-
loid C genome as maternal parent (one origin). Seven ac-
cessions had nucleotide T at the same position, presum-
ably derived from the diploid U genome maternal parent
(another origin). At least one additional origin was as-
sumed for the accessions with the deletion. Thus, chloro-
plast sequence data suggests that at least three origins
occurred in Ae. triuncialis formation, although one of the
events may be due to introgression between Ae. triunci-
alis and a diploid progenitor.

We also sequenced the entire U6/R6 locus from 5 ac-
cessions of Ae. caudata, 12 accessions of Ae. umbellul-
ata and 10 of Ae. triuncialis to determine if additional
polymorphisms linked to the G/T transversion at position
58,329 might provide additional evidence for two chlo-
roplast types lacking the deletion. A total of 651 bases of
DNA sequence were obtained for all alleles. Six parsi-
mony sites, 20 variable sites and two indels were re-
vealed. Two alleles were observed in Ae. triuncialis ac-
cessions. The first allele contained nucleotide T at posi-
tion 58,329 (U genome-specific, see above) together
with an A at both positions 58,276 and 58,523 (bold 
single-underlined nucleotides in Fig. 3) based on the
complete sequence of wheat cpDNA (Ogihara and
Tsunewaki 2000). The same allele was also found in Ae.
umbellulata. The second allele had nucleotide G at posi-
tion 58,329 (C genome-specific, see above) along with G
and T at positions 58,276 and 58,523, respectively. This

Fig. 2 Maximum parsimony tree of locus G43 derived from heu-
ristic search with a length of 86, CI of 0.9186, RI of 0.9517
and RC of 0.8743. Bootstrap values are given about each node.
Accession designations are given in Table 1. Ae. tauschii KU2050
was the outgroup taxon

Fig. 3 DNA sequences of intergenic region between ycf4 and
cemA in chloroplast genome from Ae. umbellulata (CIae66).
The boxed region indicates the deletion that occurs in some
Aegilops chloroplasts. Bold italicized nucleotides represent a pair
of direct repeats. Bold double-underlined nucleotide demonstrates
G/T transversion at position 58,329. Bold single-underlined nucle-
otides show additional polymorphisms at positions 58,276
and 58,523 that are associated with the G/T transversion at posi-
tion 58,329. Underlined nucleotides are left and right primers
in ycf4 and cemA genes, respectively
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allele was also seen in Ae. caudata. These two additional
nucleotide differences supported our hypothesis that tet-
raploid Ae. triuncialis inherited two distinct chloroplast
types lacking the deletion. One allele in Ae. triuncialis
was inherited from Ae. caudata and another allele was
inherited from Ae. umbellulata. Another observation
based on this sequence was a pair of direct repeats flank-
ing the deletion region (bold italicized nucleotides in
Fig. 3) that might be responsible for the deletion mecha-
nism (Ogihara et al. 1992).

Nuclear and chloroplast polymorphisms indicated
linkage disequilibrium by nuclear and chloroplast corre-
spondence though it was not strongly supported (Table 3;
χ2 = 6.859; 3 df; P = 0.0765). The U6/R6 chloroplast
type with the deletion was more often associated with
the G43 B allele (61 accessions) than would be expected
(52.39) if these alleles were independent. A plausible ex-
planation is that the U6/R6 (with deletion) chloroplast
and the G43 B allele were introduced from a single U
parent. Although hybridization has occurred among ac-
cessions of independent origin, it has not been sufficient
to cause linkage equilibrium among the chloroplast and
nuclear sequences. 

In conclusion, our results suggest that at least three
polyploidization events occurred to form Ae. triuncialis.
Two alleles are shared between Ae. umbellulata and Ae.
triuncialis based on nuclear DNA sequence at the G43
locus; while two chloroplast types, with and without a
300-bp deletion, are found in both the diploid progeni-
tors and polyploid. Additionally, based on three nucleo-
tide polymorphisms, it appears that the chloroplast type
lacking the deletion may have two origins.
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